Requirement for Raf and MAP kinase function during the meiotic maturation of Xenopus oocytes

نویسندگان

  • J R Fabian
  • D K Morrison
  • I O Daar
چکیده

The role of Raf and MAPK (mitogen-activated protein kinase) during the maturation of Xenopus oocytes was investigated. Treatment of oocytes with progesterone resulted in a shift in the electrophoretic mobility of Raf at the onset of germinal vesicle breakdown (GVBD), which was coincident with the activation of MAPK. Expression of a kinase-defective mutant of the human Raf-1 protein (KD-RAF) inhibited progesterone-mediated MAPK activation. MAPK activation was also inhibited by KD-Raf in oocytes expressing signal transducers of the receptor tyrosine kinase (RTK) pathway, including an activated tyrosine kinase (Tpr-Met), a receptor tyrosine kinase (EGFr), and Ha-RasV12. KD-RAF completely inhibited GVBD induced by the RTK pathway. In contrast, KD-RAF did not inhibit GVBD and the progression to Meiosis II in progesterone-treated oocytes. Injection of Mos-specific antisense oligodeoxyribonucleotides inhibited MAPK activation in response to progesterone and Tpr-Met, but failed to inhibit these events in oocytes expressing an oncogenic deletion mutant of Raf-1 (delta N'Raf). Injection of antisense oligodeoxyribonucleotides to Mos also reduced the progesterone- and Tpr-Met-induced electrophoretic mobility shift of Xenopus Raf. These results demonstrate that RTKs and progesterone participate in distinct yet overlapping signaling pathways resulting in the activation of maturation or M-phase promoting factor (MPF). Maturation induced by the RTK pathway requires activation of Raf and MAPK, while progesterone-induced maturation does not. Furthermore, the activation of MAPK in oocytes appears to require the expression of Mos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissociation of MAP kinase activation and MPF activation in hormone-stimulated maturation of Xenopus oocytes.

MAP kinase activation occurs during meiotic maturation of oocytes from all animals, but the requirement for MAP kinase activation in reinitiation of meiosis appears to vary between different classes. In particular, it has become accepted that MAP kinase activation is necessary for progesterone-stimulated meiotic maturation of Xenopus oocytes, while this is clearly not the case in other systems....

متن کامل

Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse.

Mos is normally expressed during oocyte meiotic maturation in vertebrates. However, apart from its cytostatic factor (CSF) activity, its precise role during mouse meiosis is still unknown. First, we analyzed its role as a MAP kinase kinase kinase. Mos is synthesized concomitantly with the activation of MAP kinase in mouse oocytes. Moreover, MAP kinase is not activated during meiosis in oocytes ...

متن کامل

Regulation and function of the MAP kinase cascade in Xenopus oocytes.

In Xenopus oocytes, activation of MAP kinase occurs during meiotic maturation through a protein kinase cascade (the MAP kinase cascade), which is utilized commonly in various intracellular signaling pathways in eukaryotes. Studies with a neutralizing antibody against Xenopus MAP kinase kinase (MAPKK), a direct upstream activator for MAP kinase, have shown that the MAP kinase cascade plays a cru...

متن کامل

The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90Rsk

BACKGROUND During oocyte maturation in Xenopus, progesterone induces entry into meiosis I, and the M phases of meiosis I and II occur consecutively without an intervening S phase. The mitogen-activated protein (MAP) kinase is activated during meiotic entry, and it has been suggested that the linkage of M phases reflects activation of the MAP kinase pathway and the failure to fully degrade cycli...

متن کامل

Meiotic cell cycle in Xenopus oocytes is independent of cdk2 kinase.

In vertebrates, M phase-promoting factor (MPF), a universal G2/M regulator in eukaryotic cells, drives meiotic maturation of oocytes, while cytostatic factor (CSF) arrests mature oocytes at metaphase II until fertilization. Cdk2 kinase, a G1/S regulator in higher eukaryotic cells, is activated during meiotic maturation of Xenopus oocytes and, like Mos (an essential component of CSF), is propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 122  شماره 

صفحات  -

تاریخ انتشار 1993